Linear convergence of a modified Frank-Wolfe algorithm for computing minimum-volume enclosing ellipsoids

نویسندگان

  • Selin Damla Ahipasaoglu
  • Peng Sun
  • Michael J. Todd
چکیده

We show the linear convergence of a simple first-order algorithm for the minimum-volume enclosing ellipsoid problem and its dual, the D-optimal design problem of statistics. Computational tests confirm the attractive features of this method.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A modified Frank-Wolfe algorithm for computing minimum-area enclosing ellipsoidal cylinders: Theory and algorithms

We study a first-order method to find the minimum cross-sectional area ellipsoidal cylinder containing a finite set of points. This problem arises in optimal design in statistics when one is interested in a subset of the parameters. We provide convex formulations of this problem and its dual, and analyze a method based on the Frank-Wolfe algorithm for their solution. Under suitable conditions o...

متن کامل

Approximate Minimum Volume Enclosing Ellipsoids Using Core Sets

We study the problem of computing the minimum volume enclosing ellipsoid containing a given point set S = {p1, p2, . . . , pn} ⊆ R. Using “core sets” and a column generation approach, we develop a (1 + )-approximation algorithm. We prove the existence of a core set X ⊆ S of size at most |X| = α = O ( d ( log d + 1 )) . We describe an algorithm that computes the set X and a (1 + )-approximation ...

متن کامل

Computing Minimum-Volume Enclosing Axis-Aligned Ellipsoids

Given a set of points S = {x1, . . . , xm} ⊂ R and > 0, we propose and analyze an algorithm for the problem of computing a (1 + )-approximation to the minimum-volume axis-aligned ellipsoid enclosing S . We establish that our algorithm is polynomial for fixed . In addition, the algorithm returns a small core set X ⊆ S , whose size is independent of the number of points m, with the property that ...

متن کامل

Minimum-Volume Enclosing Ellipsoids and Core Sets1

We study the problem of computing a (1 + )-approximation to the minimum volume enclosing ellipsoid of a given point set S = {p, p, . . . , p} ⊆ R. Based on a simple, initial volume approximation method, we propose a modification of Khachiyan’s first-order algorithm. Our analysis leads to a slightly improved complexity bound of O(nd/ ) operations for ∈ (0, 1). As a byproduct, our algorithm retur...

متن کامل

Minimum Volume Enclosing Ellipsoids and Core Sets

Abstract. We study the problem of computing a (1 + )-approximation to the minimum volume enclosing ellipsoid of a given point set S = {p1, p2, . . . , pn} ⊆ Rd. Based on a simple, initial volume approximation method, we propose a modification of Khachiyan’s first-order algorithm. Our analysis leads to a slightly improved complexity bound of O(nd3/ ) operations for ∈ (0, 1). As a byproduct, our ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Optimization Methods and Software

دوره 23  شماره 

صفحات  -

تاریخ انتشار 2008